
Compiler-Inserted Fault Tolerance
for Message Passing Applications

Keshav Pingali,
Dan Marques, Paul Stodghill, Greg Bronevetsky

Cornell University

Fault tolerance

n Fault tolerance comes in different
flavors
n Mission-critical systems: (eg) air

traffic control system
n No down-time, fail-over, redundancy

n Computational applications
n Restart after failure
n Minimize expected time to completion

Fault tolerance strategies

Checkpointing Message-logging

uncoordinated

non-blocking blocking

pessimistic

optimistic

causal

coordinated

State saving

Application-level

System-level

Our experience/beliefs:

n Message-logging does not work well for
communication-intensive numerical
applications
n Many messages, much data

n System-level checkpoint is not as efficient as
application-level
n IBM’s BlueGene protein folding

n Sufficient to save positions and velocities of bases

n Alegra talk
n App. level restart file only 5% of core size

Our goal
n Develop a preprocessor that will transparently add

application-level checkpointing to MPI applications
n As easy to use as system-level checkpointing
n As efficient as user-specified application-level checkpointing

MPI source code,
no FT consideration

MPI source code
with app. level FT

FT MPI application

our preprocessor native compiler

Choices for Runtime layer

Application

MPI

Hardware

FT layer

Application

MPI

FT layer

Hardware

Our choice

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Sequential application state
n An application’s state consists of

n Program counter
n Call stack
n Globals
n Heap objects

n Similar in technique to PORCH
n Ramkumar, Strumpen (Iowa / MIT)

Example
main()
{

int a;
VDS.push(&a, sizeof a);
if(restart)

load LS;
copy LS to LS.old
jump dequeue(LS.old)

// …
LS.push(2);

label2:
function();
LS.pop();
// …
VDS.pop();

}

function()
{

int b;
VDS.push(&b, sizeof b);
if(restart)

jump dequeue(LS.old)
// …
LS.push(2);
take_ckpt();

label2:
if(restart)

load VDS;
restore variables;

LS.pop();
// …
VDS.pop();

}

Optimizations

n Where should we checkpoint?
n CATCH

n Li, Fuchs (Illinois)

n Memory exclusion
n Live/Clean/Dead variable analysis

n Plank, Beck, Kingsly (Univ. Tennessee)

n Recomputation vs. restoring
n Protein folding example

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Supporting MPI applications

n It is not sufficient to take a checkpoint of
each individual process

n We need to account for the following
n In-flight messages
n Inconsistent messages
n Non-blocking communication
n “Hidden” MPI state
n At application level, message send/receive not

necessarily FIFO
n Process can use tags to receive messages out of order

In-flight and inconsistent messages

n m1 is in-flight (sent but not recvd)
n m2 is inconsistent (recvd but not sent)

P1

P2

m1
m2

recovery line

Non-blocking communication
n MPI allows for non-blocking communication

n Did the send happen before or after P2’s checkpoint was taken?
n If it happened before, it is consistent. If it happened after, it is

inconsistent.

I_send

? ?

P1

P2

“Hidden” MPI state
n Need to save and restore the state of

the MPI library
n This state is hidden from our

preprocessor
n Two kinds of hidden state

n Persistent - communicators, groups, etc.
n Not correct to take system-level ckpt

n Volatile - request objects (not handles)

Non-FIFO receive order
n Applications may receive messages in non-FIFO order

n Two messages from P2 to P1 will be received in send order only if
they have the same tag and communicator

n Most protocols assume FIFO

Send(tag = 1) Send(tag = 2)

Recv(tag = 1)Recv(tag = 2)
P1

P2

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Beliefs

n Complexity of making program FT may
vary from program to program
n Not all programs will exhibit all the

problems described earlier

n FT protocol should be customized to
complexity of program
n Minimize the overhead of fault tolerance

Degrees of complexity

Parametric computing

Bulk Synchronous

Iterative Synchronous

MIMD(eg. Task parallelism)

Non-FIFO MIMD

Increasing
complexity
of protocol

Parametric computing
n Parametric computing, i.e. embarrassingly

parallel
Distribute work
Do work
Collect Results

n No communication in “Do work” area
n Can take uncoordinated checkpoints within

that area
n Each takes its own checkpoints

Bulk synchronous
n “Phase-step” model of computation

do work 1
barrier
do work 2
barrier
do work 3

n Communication and computation in “do work” areas

n Use blocking coordinated checkpointing, provided
n no messages cross the barrier
n no transient hidden state that crosses the barrier
n àrequires compiler analysis

Analysis problems
If(rank = 0)

send(1)
Else

send(0)

Barrier

If(rank = 0)
recv(1)

Else
recv(0)

If(rank = 0)
I_send(&r)

Else
I_recv(&r)

Barrier

Wait(&r)

Iterative synchronous
n Each process runs the same number of

iterations of a loop
for(i…)
{

Communicate
Compute

}

n Are there places where barriers can be
(safely) inserted?
n If so, treat as bulk synchronous

Analysis problem
For()
{
if(rank = 0)

x = 1
else

x = 2
if(x = 1)

Barrier?
}

For()
{
if(rank = 1)

recv

Barrier?

if(rank = 0)
send

}

Task parallel (e.g. producer /
consumer)
If(rank = 0)
{

while(not done)
send(DATA)

send(DONE)
}
Else
{

int x;
while(1)

recv(ANY_TAG)
if(tag = DATA)

x += f(DATA)
else

break
}

n There are no
interesting (useful)
places to insert
barriers
n Can’t use blocking

protocol
n Must use non-

blocking protocol

Non-blocking protocol
n Chandy-Lamport is a simple, well-known,

coordinated non-blocking protocol
n Assumes FIFO channels
n Initiator takes local checkpoint, and sends marker

to neighbors
n On receiving marker, process takes checkpoint

and sends its marker to neighbors
n After taking checkpoint, process P logs all

messages from process R, until R’s marker arrives
n These are in-flight messages

Example
n Process Q initiated the checkpoint.
n It logs all messages from P until P’s marker arrives
n On restart, Q “receives” from log until empty

In-flight, log Not in-flight

P

Q

Drawbacks of C-L protocol

n Does not work for application-level
checkpointing
n In C-L, process must checkpoint as soon as

it receives a marker from a neighbor

n Assumes fixed communication graph
n Assumes FIFO communication
n No notion of collective communication

CL with delayed checkpointing
n Before checkpoint

n log count of all messages from R that arrive after R’s marker
arrived

n After checkpoint
n Log all messages that arrive from S until S’s marker arrives
n Log all non-deterministic choices made until all markers have

arrived

Log inconsistent count

Log in-flight

Log non-det

Degrees of complexity

Parametric computing

Bulk Synchronous

Iterative Synchronous

MIMD(eg. Task parallelism)

Non-FIFO MIMD

Increasing
complexity
of protocol

Outline

n Introduction
n Application-level FT for sequential applications
n Problems in supporting MPI applications
n Approaches to solving these problems
n Status and ongoing work

Status
n Completed

n Preprocessor for saving/restoring sequential state
n No optimizations

n In progress
n Application API
n Determining checkpoint locations
n Support for in-flight/non-FIFO msgs/…..

n Implementing modified CL protocol

n Support for saving volatile hidden MPI state
n Analysis problems

